
QUESTION INTERFACE FOR 3D PICTURE CREATION 

ON AN AUTOSTEREOSCOPIC DIGITAL PICTURE FRAME

Chris Varekamp
a
, Patrick Vandewalle

a
, Marc de Putter

b

(a) Philips Research, Eindhoven, The Netherlands

(b) Philips 3D Solutions, Eindhoven, The Netherlands

ABSTRACT

We propose an interface for creating a depth map for a 2D picture. 

The image and depth map can be used for 3D display on an auto-

stereoscopic photo frame. Our new interface does not require the 

user to draw on the picture or point at an object in the picture. 

Instead, semantic questions are asked about a given indicated 

position in the picture. This semantic information is then translated 

automatically into a depth map.

Index Terms— still picture conversion, autostereoscopic 

display, digital photo frame.

1. INTRODUCTION

A 3D digital photo frame with autostereoscopic display is currently 

investigated as possible product by Philips 3D Solutions. Ideally, a 

user can load pictures from a normal digital camera onto the photo 

frame and view them in 3D. However, here we face the problem 

that existing fully automated 2D to 3D conversion methods 

produce insufficient 3D quality and existing semi-automated

conversion methods are too complex for efficient operation by the 

typical photo frame user.

We believe that it is too complex for many users to draw a good 

depth map. Furthermore, an approach where a depth map is drawn 

also requires an interface that uses a pen to outline object contours 

or to point to objects. It is therefore not easy to make a simple user 

interface that requires little or no explanation before use.

We propose an interface and algorithm that lets the user convert a 

picture without requiring 3D knowledge. Instead of having to draw 

a depth map, the user needs to answer a few questions about 

specific locations in the picture (Figure 1). A depth map is 

automatically calculated and the picture may be viewed in 3D.

A location in the picture is indicated with a circle. Initially this

circle is placed at the center of the picture. The user can select one 

of a small set of predefined object classes such as: ‘Sky’, ‘Ground’, 

‘Building’, ‘Person’, ‘Animal’. This information is then used to 

produce a dense depth map. This means that by answering a couple 

of questions a user can convert 2D pictures into 3D.

This paper is organized as follows. In Section 2 we review relevant 

previous work. In Section 3 we describe the autostereoscopic 

display for which the conversion is intended. Section 4 provides

details on the conversion algorithm including the proposed method 

of repositioning the position indicator for a new question. In 

Section 5, we show results of the proposed method and discuss 

these. Conclusions are drawn in Section 6.

Figure 1: Question interface for 3D picture creation. Pressing one 

of the buttons sets the class at the location being indicated by the 

circle. The green circle is then automatically placed in the position 

where a label input is most needed.

2. PREVIOUS WORK

Ideally, depth estimation should be fully automated as proposed by 

Saxena et al. [1] and Hoiem et al. [2]. Although this approach is 

very promising, segmentation errors and depth errors will remain 

for pictures that are not characterized well in the training set on 

which the model is learned. On the other hand, semi-automated 

methods for 3D creation [3][4][5] have not addressed the constraint 

that the user-interface must be very simple. DDD (Harman et al. 

[3]) has patented a method to assign a certain depth to a set of 

pixels and automatically extend this to other pixels. While 

conceptually simple, the user must understand which depth to 

assign to a certain object. This may cause problems, especially for 

planes that have varying depth (such as the ground surface). The 

method proposed by van den Hengel et al. allows for a high-quality 

conversion but requires object boundary specification and 3D input 

together with some 3D modeling knowledge [4]. The system 

described by Russell et al. uses object detection from learned 

object categories [5]. A depth ordering is then possible once the 

outlines of multiple objects are known. Using this approach for 

picture conversion seems promising but depends much on the 

ability to handle the large variation of objects (e.g. a building can 

have many shapes and sizes). Finally, roughly indicating an 

object’s interior with a pen offers an efficient way of segmenting

objects. Bai and Sapiro describe this new form of interaction to 

efficiently produce a foreground/background seg-mentation and 

transparency channel [6]. Our method differs from these 

approaches since we do not require the user to draw or indicate 

anything in the picture area.

978-1-4244-4318-5/09/$25.00 c©2009 IEEE 3DTV-CON 2009



3. AUTOSTEREOSCOPIC DISPLAY

Philips 3D Solutions has developed a 3D photo frame (Figure 2).

This photo frame consists of standard 2D photo frame hardware 

and software, an autostereoscopic display and a 3D signal 

processing chip called IC3D. The autostereoscopic display has a 5-

view lenticular lens with optimal viewing distance in the range 0.7-

1.0 m. It is glued on a standard 8 inch LCD, aspect ratio 4:3 and 

800�600 pixel resolution. The input data format for the 3D photo 

frame is a horizontally stacked image of the visual image with 

corresponding depth map. This stacked image is JPEG-compressed 

and loaded into the photo frame using a USB interface or memory 

card.

Figure 2: Block diagram of the 3D photo frame.

4. CONVERSION ALGORITHM

4.1. Color image segmentation

The purpose of color image segmentation is to make the question 

interface fast enough for practical use. We use an iterative 

segmentation algorithm that modifies the geometry of a square grid

such that the regions become homogeneous with respect to color 

but have a smooth boundary. This approach was taken by Oliver 

and Quegan for synthetic aperture radar images [7]. We have 

implemented the global energy minimization efficiently using the 

derivations given in [8, pp. 548-549]. The resulting segmentation is 

shown in Figure 3. It can be seen that some initial regions keep 

their original square shape while other regions adapt their shape to 

become homogeneous with respect to color. As can be seen, 

important depth discontinuities coincide with region edges.

Region follows original square grid

Region adapts to object boundary

Figure 3: Result of color image segmentation.

4.2. Calculating a dense class label map

Figure 4 shows our pre-defined class labels that the user can select 

when answering the questions. Note that these labels were chosen 

intuitively based on our current data set. Other/additional labels 

can be easily incorporated.
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Figure 4: Three picture types with corresponding classes.

After each user input, the confidence in class k�K is re-initialized 

to zero for all regions for which the class is not known. The 

confidence is then calculated from the labeled regions, for which 

the class label is known. This is done independently for each class 

using an iterative algorithm based on confidences of neighbor 

regions and color differences between neighbor regions. For region 

i, with neighbor regions j, the confidence at iteration t is calculated 

as:
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where

wij = exp �� ri � rj + gi � g j + bi � bj( )( ) , (2)
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and (r, g, b) is the pixel color where each channel takes a value 

from the set {0, …, 255} and � = 0.1. Note that the use of certainty

is known in literature
1
. Note also that wij can be pre-computed 

since it does not depend on the iteration number. We found that 50 

iterations give good results for our test set. After each user input, 

the label map is automatically updated by selecting for each 

segment i the class ki that has maximum confidence ci after 50 

iterations:

ci � max
k�K

pi , 50
(k )( )

ki � arg max
k�K

pi , 50
(k)( ) .

        (3)

For each new question we position the displayed indication in the 

region for which the maximum classification confidence ci is 

lowest over all regions:

i (new)
� arg min

i�S
ci( ) ,              (4)

where i
(new)

 is the selected region and S is the set of all regions.

4.3. From class label map to depth map

What remains is converting the class label map into a depth map. 

For this step we use likely relations that exist between class labels 

and depth. For instance, a pixel that has label ‘Ground’ is likely to 

be part of a horizontal plane, while a pixel labeled as ‘Sky’ should 

go to the background.

For images labeled as ‘Scenery’, we first determine the largest 

occurring (top) vertical position, yg,max, that has label ‘Ground’

(with the origin of the coordinate system at the lower-left of the 

picture). For all connected sets of regions k that have class label 

‘Person’, ‘Animal’ or ‘Building’ we determine the smallest 

occurring (bottom) y-coordinate ymin. The depth map is then 

computed by scanning the labeled image L from bottom to top and 

assigning depth values dxy to a pixel with coordinates (x,y) as 

follows:

dxy =

0 if Lxy =  ' Sky'

255� sy if Lxy =  'Ground'

255� symin if Lxy = ' Pers' ,  ' Anim' ,  ' Build'{ }

�

�
�

�
�

(5)

where s = 200/yg,max. This creates a slanted surface for the ground 

area, and places persons, animals and other objects vertically on 

this surface. The sky is put at the furthest point. Note that larger 

depth values are more to the front, with depth values ranging from 

0 to 255.

For images labeled as ‘Portrait’ or ‘Other’, we only make a 

distinction between ‘Foreground’ (or ‘Person’) and ‘Background’.

1
See for instance the work by Kohli and Torr for measurement in 

the context of ‘Graph Cut’ solutions for a Markov Random Field 

model [9].

In this case, depth values are calculated as follows:

dxy =
0 if Lxy =  ' Background'

128 if Lxy = ' Person' ,' Foreground'{ } .

�
�
�

         (6)

In this way, a depth map is created that can be displayed on the 3D 

picture frame (in combination with the original image).

5. RESULTS AND DISCUSSION

Figure 5 shows an input image of type ‘Scenery’ and the resulting 

confidence map and depth map after answering five questions 

about the class labels. The resulting depth map is satisfactory in 

terms of object alignment and depth realism. However, the picture 

is ideal since it consists of large regions of homogeneous color for 

which image segmentation and confidence propagation (equation 

1) work well. It is interesting to note that a good depth map is 

produced even before confidences are high in all regions. 

Figure 5: Input image (left); confidence map c (center); depth map 

(right). Five questions were answered to obtain this result.

Figure 6 shows resulting depth maps after 5, 10 and 15 questions 

for a larger set of pictures, from top to bottom: ‘balloon’, ’house’, 

‘mill’, ‘ducks’, ‘tower’, ‘church’, ‘plumeria’, and ‘patrick’.
2

 The 

images ‘balloon’ and ‘house’ are easy for our system and require 

respectively 5 and 10 questions to achieve an acceptable quality. 

The ‘mill’ image fails due to detailed depth structure. For instance 

the mill wings are gone. Another difficult case is the ‘ducks’ 

image. For this picture, lack of color contrast with the water and 

the large color variation of the ducks cause the classification to be 

unreliable. Total failure occurs for ‘church’. This may be attributed 

to the high amount of color variation inside the church making the 

propagation problematic.

Figure 7 shows the picture average confidence as a function of the 

question number. The most successful conversion results 

(‘balloon’ and ‘tower’) end up highest and the poorest conversion 

result (‘church’) ends up lower. However, in general, the average 

confidence is not a good predictor for depth map quality since all 

curves rise in roughly the same way.

To summarize, four out of the eight pictures in Figure 6 are 

converted successfully within 10 questions. The remaining 4 

pictures suffer from grouping cues: the weighting based on color 

difference only (equation 2) is too limited.

2
Images can be provided by the authors upon request.



N = 5 N = 10 N = 15

Figure 6. Depth maps after 5, 10 and 15 questions.

Figure 7. Average confidence as a function of question number.

6. CONCLUSIONS

We have introduced a user-friendly and efficient method for 2D to 

3D picture conversion that can be used with an autostereocopic 

(3D) photo frame. The interface is efficient and easy to use. 

However, to improve the success rate of the conversion, more 

image features (such as texture) should be included in the 

estimation of class label confidences. This will allow better 

grouping of regions belonging to the same object, resulting in 

better depth maps.
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