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ABSTRACT

In this paper, we present a super-resolution method to approximately double image resolution in both dimensions
from a set of four low resolution, aliased images. The camera is shifted and rotated by small amounts between
the different image captures. Only the low frequency, aliasing-free part of the images is used to find the shift
and rotation parameters. When the images are registered, it is possible to reconstruct a higher resolution,
aliasing-free image from the four low resolution images using cubic interpolation. We applied our algorithm in
a simulation, where all parameters are known and controlled, as well as in a practical experiment using images
taken with a real digital camera. The results obtained in both tests prove the validity of our method.

Keywords: super-resolution imaging, subpixel planar motion estimation, shift and rotation estimation, aliased
images

1. INTRODUCTION

For many applications, digital cameras are replacing their analog counterparts. Recently, prices of digital ima-
ging equipment have decreased sharply. At the same time, the image quality of digital cameras is continuously
increasing, showing for most applications no more perceivable difference between images taken with analog and
digital cameras. It is therefore no surprise that digital cameras can now be found in many applications, in all
forms, colors and prices. Meanwhile, the transition from analog to digital devices introduces new problems to
be dealt with, such as sensor noise, aliasing, demosaicing, etc.
One of the consequences of the use of digital cameras is aliasing, which can severely degrade the quality of
a digital image. These artifacts do not occur in images taken with traditional film cameras, because they are
caused by the sampling process in digital cameras. If the sampling frequency is too low compared to the maximal
signal frequency, aliasing effects appear. Then too little information about the sampled signal (in our case a 2D
image) is available in order to be able to reconstruct the original signal unambiguously.
Intuitively, the solution to this problem is to increase the sampling frequency, such that the Nyquist criterium
is satisfied and, consequently, aliasing is avoided. But this solution doesn’t work for digital cameras, because
we cannot change their sampling frequency. It is fixed with the choice of a CCD sensor and cannot be modified
depending on the scene. The solution that is now mostly chosen by digital camera manufacturers is to use an
optical system that cuts off most frequencies above half the sampling frequency (and thus satisfies the Nyquist
criterium again). While this certainly eliminates all aliasing artifacts, it also removes part of the image signal.
Another solution could be to add more samples from a second sampling set (image) of the same signal (scene)
at different locations.
This is the super-resolution approach: a set of images of the same scene is combined to form a new, more densely
sampled image of the scene. This idea was first introduced by Tsai and Huang1 in 1984. A good overview of the
super-resolution literature is given by Borman and Stevenson2 and Park et al.3
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Most super-resolution approaches can be subdivided in two (main) parts: image registration and image recon-
struction. Image registration is performed first, in order to align the different images as precisely as possible. A
sub-pixel precision is required for the alignment, because it is exactly this in-between pixel information that will
be used to increase image resolution and remove aliasing.
Different approaches exist for estimating motion between two images. Frequency domain methods for estimating
shifts in the image plane are based on the fact that a shift in spatial domain can be expressed as a phase shift in
frequency domain. Two shifted images differ only by a linear phase difference.4, 5 These methods can be extended
to include (planar) rotation and scale using polar coordinates,6 with the advantage that shift, rotation and scale
can be estimated separately. The main limitation of frequency domain methods is that they are restricted to
global shifts and rotations in the image plane, and scale. Our algorithm uses a frequency domain method, with
a rotation estimation method that does not need a conversion to polar coordinates. Spatial domain registration
methods allow the use of more general motion models, like homographies. Irani et al.7 describe a spatial domain
method that allows for different motions in the same image. Capel and Zisserman8 use a maximum likelihood
method to determine the homography parameters from corresponding feature vectors.
In a second step, a high resolution image is reconstructed from the set of registered low resolution images. This
can be done using nonuniform interpolation. Another possibility is to apply a method based on projection
onto convex sets (POCS), where the final image is assumed to belong to different convex sets with a (possibly
non-unique) intersection. Keren et al.9 describe an iterative method starting from an initial guess of the high
resolution image. This image is then improved by simulating the imaging process and minimizing the difference
between the simulated and observed low resolution images. In our approach, we use cubic interpolation for
reconstruction of the high resolution image.
Some methods do not compute the registration parameters explicitely. The optimal high resolution image is
directly estimated using a (constrained) least squares or a maximum a posteriori (MAP) approach.10, 11 A
regularization parameter is often used in these algorithms to avoid multiple solutions.
This paper is structured as follows. In Section 2 we describe our registration method. First, general concepts on
the separation of rotation and shift estimation are developed. Then, we discuss the rotation and the shift esti-
mation algorithms, respectively. And finally, some modifications for registration of aliased images are proposed.
In Section 3, the reconstruction method is described, and in Section 4, the complete algorithm is presented. We
show results on simulated and aliased images captured with a digital camera in Section 5. In Section 6, we
discuss possible applications of our method, and Section 7 concludes the article.

2. IMAGE REGISTRATION

We use a frequency domain method to register the images. Therefore, we assume that the motion between two
images will be a planar motion in a plane parallel to the image plane. Motion can then be described by three
parameters: horizontal and vertical shift ∆x and ∆y and a rotation angle φ.
Using these parameters, we can describe a shifted and rotated version f2(x) of a signal f1(x) as

f2(x) = f1(R(x + ∆x)), with x =
[

x
y

]
, ∆x =

[
∆x
∆y

]
, R =

[
cosφ − sin φ
sin φ cosφ

]
. (1)

Note that the image has been first shifted and then rotated. In order to find the same values of ∆x, ∆y and φ,
we will need to cancel first rotation and then shift. We can describe this in the Fourier domain as

F2(u) =
∫∫

x

f2(x)e−j2πuT xdx

=
∫∫

x

f1(R(x + ∆x))e−j2πuT xdx

= ej2πuT ∆x

∫∫
x′

f1(Rx′)e−j2πuT x′
dx′,

(2)
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with x′ = x + ∆x, and F2(u) the Fourier transform of f2(x). Using another transformation x′′ = Rx′, we can
therefore compute

|F2(u)| =
∣∣∣ej2πuT ∆x

∫∫
x′

f1(Rx′)e−j2πuT x′
dx′

∣∣∣
=

∣∣∣
∫∫

x′
f1(Rx′)e−j2πuT x′

dx′
∣∣∣

=
∣∣∣
∫∫

x′
f1(x′′)e−j2πuT (RT x′′)dx′′

∣∣∣
=

∣∣∣
∫∫

x′′
f1(x′′)e−j2π(Ru)T x′′

dx′′
∣∣∣,

(3)

which does not depend on the shifts and is a rotated version of |F1(u)|. It is therefore possible to estimate the
relative rotation angle between two images first. We can then apply the inverse rotation to the Fourier transform.
The (phase) shift can be computed from the resulting image and the reference image.

2.1. Rotation estimation

To estimate the rotation angle between two images, we can compute the correlation between the reference image
and rotated versions of the second image. The estimated rotation angle is the angle for which a maximum
correlation is obtained. The main disadvantages of this method are its computational cost and the interpolation
errors that result from every rotation.
We developed a different method where only a one-dimensional correlation is needed. The average signal energy
is computed for every angle of the Fourier transform of the two images. This gives us the energy in the two images
as a function of the angle. We can then find the rotation angle as the maximum of the circular correlation between
the two functions. This is a much faster method as it does not require as many correlations or interpolations.
The lowest frequency values are discarded for the computation of the average energy, because they are generally
very large and very coarsely sampled in terms of angle. This would bias the results. Only a disc region with
radius from 0.1ρ to ρ, with ρ the image radius (half of the image size), is used in order to have similar numbers
of values at the different angles (see Figure 1).

(a) (b)

Figure 1. Fourier transform of an original image (a) and after rotation over 30◦ (b). Only a disc with radius 0.1ρ < r < ρ
(with r the radius and ρ half of the image size) is considered for the rotation estimation.
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2.2. Shift estimation

A shift in the image plane corresponds to a phase shift in frequency domain. For an image f1(x) and its shifted
version f2(x), with Fourier transforms F1(u) and F2(u), respectively, we can express this as

F2(u) = ej2πuT ∆x

∫∫
x

f1(x)e−j2πuT xdx

= ej2πuT ∆xF1(u).
(4)

Thus, the difference between the phase of the two Fourier transforms is a plane in u-v space. Horizontal and
vertical shifts can therefore be directly computed as the slope of this plane in horizontal and vertical direction,
respectively. Because of noise in the images, differences because of non-overlapping parts, etc. this phase difference
is only approximately a plane. We solve this problem by estimating the plane parameters from the data with a
least squares method to make the estimates more robust to errors.

2.3. Aliasing and circular extension

The registration methods described above work for perfect, noise-free images. In reality, however, images are
degraded by noise and aliasing. This often causes failure of the image registration.
Assume the images, with maximal frequency fmax, are sampled at frequency fs

with fmax < fs < 2fmax and all f =
[

fx

fy

]
.

This setup does not satisfy the Nyquist criterium (fs > 2fmax), and therefore aliasing artifacts will be present in
the sampled images. But, as fs > fmax, the signal is free of aliasing and thus the same in all images (up to shift
and rotation effects) at frequencies

−fs + fmax < f < fs − fmax.

We can therefore do the image registration based on these frequencies and use the complete frequency content to
reconstruct the high resolution image accurately. This principle has already been applied to image registration
by Kim and Su4 and to super-resolution by Vandewalle et al.12

Another cause of artifacts in the Fourier transform of images is the fact that they are (in general) not circular.
When computing the FFT of an image, it is circularly extended, which causes strong artificial edges in the spatial
domain image. In the frequency domain, this mainly causes artifacts around the two axes. In order to eliminate
this effect, we multiply the images by a (Tukey) window prior to registration. The border lines of the image all
have zero value and the image is successfully circularized.

3. IMAGE RECONSTRUCTION

The high resolution image is reconstructed using a cubic interpolation method. First, the coordinates of the
pixels are computed for all images in the coordinate frame of the first image. Next, a regular, higher resolution
grid is constructed for the new image. And finally, the image values on this grid are interpolated from the known
(irregularly sampled) pixel values using cubic interpolation.
How many images are required to increase the resolution by a certain factor? Intuitively, it seems that with more
images, we can always construct a better, higher resolution image. However, there are some limitations. Because
we assumed the sampling frequency to be fs > fmax, the actual resolution can be increased by a factor of two in
each dimension. It cannot be increased more, because higher frequencies are not present in the measured images.
When the image resolution is increased by a factor two in both dimensions, this results in an image with four
times the original number of pixels. In frequency domain, we could say that in order to compute all frequency
components of the new image, four times as many measurements would be needed. This is not generally true
for reconstruction using cubic interpolation, but we assume four images are still a good trade-off between high
precision (many images) and low complexity (few images).
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4. ALGORITHM
The different methods described in earlier sections are combined here in the description of the complete super-
resolution algorithm.

1. All four images i1, i2, i3 and i4 are multiplied with a Tukey window to minimize border effects. The resulting
images are called i1,w, i2,w, i3,w and i4,w.

2. Estimate rotation

(a) Compute the Fourier transforms I1,w, I2,w, I3,w and I4,w of the images i1,w, i2,w, i3,w and i4,w.
(b) Compute the average energy at all different angles, up to a precision of 0.1 (degrees). Do this for

I1,w, I2,w, I3,w and I4,w.
(c) Correlate the energy functions of I2,w, I3,w and I4,w with the one from I1,w.

(d) The estimated rotation angle φ̂ is the maximum of this correlation function.

3. Rotate the images i2,w, i3,w and i4,w over −φ̂ and use these rotated images i1,w, i2,wr, i3,wr and i4,wr for
the shift estimation.

4. Estimate horizontal and vertical shift

(a) Compute the Fourier transforms I1,w, I2,wr, I3,wr and I4,wr of the images i1,w, i2,wr, i3,wr and i4,wr.
(b) Compute the phase difference between the images as � (I2,wr/I1,w), � (I3,wr/I1,w) and � (I4,wr/I1,w).
(c) Find the least squares solution to fit a plane through the phase values for the lowest 5% of frequencies.
(d) Derive the horizontal and vertical shifts from the plane parameters.

5. Compute the coordinates of the images i2, i3 and i4 in the coordinate frame of i1 using the estimated
rotation and shift parameters.

6. Interpolate the values on a regular 2Mx2N grid using cubic interpolation from the set of image points in
i1, i2, i3 and i4 (where MxN is the size of the original images).

5. RESULTS
The method was tested in a simulation setup as well as in a practical experiment. The goal of the simulation was
to evaluate the performance in a controlled environment with exact knowledge about the original high resolution
image and about the shift and rotation values. This enabled us to evaluate the registration and reconstruction
errors. In the practical experiment, the algorithm is tested on aliased pictures taken with a real digital camera.

5.1. Simulation
For the simulation, we started from an original high resolution (1704x1704 pixels) image, which was taken as
equivalent for continuous space (Figure 3(a)). In order to have exactly the same content in all low resolution
images, the original image was multiplied by a Tukey window and zero-padded. From this original image, four
low resolution images (221x221 pixels) were constructed by shifting and rotating the original and then down-
sampling by a factor eight (Figure 2 and Figure 3(b)). Prior to downsampling, the images are low-pass filtered
such that 5% of the frequency domain of the resulting low resolution images is free of aliasing in horizontal and
vertical directions.
These four low resolution images are then used as input to the image registration algorithm. When only shifts
are applied, the image registration is perfect. When combined shifts and rotations are applied, the rotation angle
is accurately estimated, and the shifts are well approximated. The errors in the shift estimates are due to the
interpolation approximations made when rotating the images.
Finally, the four images and the registration information are used to reconstruct a high resolution image (Fi-
gure 3(e) and 3(f)). The reconstructed image has a mean squared error of 2.5e-3 , where all pixel values are
scaled between 0 and 1 (Figure 3(g)). The precision of the image registration was sufficient to have a good
reconstruction (see Table 1).
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(a) (b) (c) (d)

Figure 2. Four low resolution images to be registered. Actual parameter values ∆x, ∆y and φ and estimated values
∆xest, ∆yest and φest are given for all four images in Table 1.

∆x ∆y φ ∆xest ∆yest φest

Image 1 (ref) 0 0 0 0 0 0
Image 2 0.625 0.25 5 0.64 0.17 5
Image 3 0.25 0.75 -3 0.19 0.68 -3
Image 4 0.375 0.125 2 0.35 0.14 2

Table 1. Comparison between the exact motion parameters (∆x, ∆y and φ) and the estimated parameters (∆xest, ∆yest

and φest) in the simulation.

5.2. Experiment

The scene we used in the practical experiment was a flat glass plate with black print, positioned parallel to the
camera image plane. The plate was illuminated from the back. A black and white digital camera was used to
capture the scene. The camera was mounted on a solid tripod, allowing for separate horizontal and vertical
shifts and rotations in the image plane. The optical system for the camera was chosen such that the images have
aliasing artifacts.
A set of four images was taken using this setup (Figure 4(a)). The camera was shifted in both directions and
rotated by a small amount between the different images. We estimate that 60% of the frequency domain of
the images is free of aliasing. The image registration algorithm was then directly applied to this set of images,
registering them all to the first image. The estimated registration parameters are

Image 2 - Image 1: ∆xest = 9.24, ∆yest = −3.84, φ = 0.9◦

Image 3 - Image 1: ∆xest = 9.89, ∆yest = −2.29, φ = 1.1◦

Image 4 - Image 1: ∆xest = 10.41, ∆yest = −5.04, φ = 1.1◦.

From the four registered images, a high resolution image was reconstructed (Figure 4(b)). As can be seen in
Figure 4(b), the images have been precisely aligned for the construction of the high resolution image and most
aliasing has been accurately removed. Remark that in the printing process of this article, the images are probably
resampled. Depending on the sampling rate, this may have reintroduced some aliasing artifacts.

6. DISCUSSION AND FUTURE WORK

High accuracy in image registration is crucial in super-resolution imaging. If good motion estimates at a subpixel
level are not available, image reconstruction will almost certainly result in a blurred, low quality image. It is then
better to interpolate a high resolution image from one single low resolution image, rather than incorrectly using
additional information from other images. Accurate subpixel shift estimates and sub-degree rotation estimates
as in the registration methods described above are necessary.

SPIE-IS&T/Vol. 5301     379



(a) (b) (c)

(d) (e) (f)

(g)

Figure 3. (a) Original high resolution image. (b) Low resolution image used as input for the super-resolution algorithm.
(c) High resolution reconstruction target. (d) Detail of the reconstruction target. (e) Reconstructed high resolution
image (MSE=2.5e−3). (f) Detail of the reconstructed image. (g) Difference between the reconstruction target and the
reconstructed image (neutral gray corresponds to zero error, the values have been amplified for better visibility).
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